Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.19.22280084

ABSTRACT

Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n=312) from 24 different wastewater treatment plants were obtained between May 9 (week 22_19) and August 4 (week 22_31), 2022. Following concentration of viral particles by flocculation, a qPCR procedure allowed us to detect MPXV DNA in 63 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 per 103 to 8.7 per 104 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.


Subject(s)
COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.pex-1688.v1

ABSTRACT

During the evolution of the SARS-CoV-2 pandemic, new variants of the virus have emerged and spread worldwide. The increased transmissibility and proclivity of some of these variants to cause more serious disease threatens public health responses against the virus, and they are classified as variants of concern (Variants of Concern, VOCs). While Next-Generation-Sequencing (NGS) is the gold standard to identify VOC, it cannot always be rapidly implemented in some settings to provide information as an early warning tool. Duplex quantitative real time RTqPCR assays offer a sensitive and easy-to-use tool to detect, discriminate, and estimate relative proportions of SARS-CoV-2 variants containing VOC-specific signature mutations from variants lacking it, using allelic discrimination probes. We developed three multiplexed RTqPCR assays that can detect Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOCs by targeting 22281_22289DelCTTTACTTG, 28262_28263InsAACA and 22029_22034DelAGTTCA deletions/insertions in their genomes, respectively. Beta and Delta deletions are mapped to the S gene (residues 241/243 and 157/158, respectively), while Gamma insertion is located between the end of ORF8 and the beginning of N gene. Our specific duplex RTqPCR assays have been adapted from a previously designed duplex RTqPCR assay used to estimate the relative proportion of genomes containing 21765-21770DelTACATG mutation affecting residues HV69/70, a signature mutation of Alpha VOC (Carcereny et al., 2021). All duplex RTqPCR assays targeting signature mutations of VOCs may be used as a complementary tool to NGS for rapid variant tracking and surveillance in wastewater-based epidemiology.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.27.21257918

ABSTRACT

Background: Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2, become dominant in several European countries raising great concern. Aim: The aim of this study was to develop a duplex real-time RT-qPCR assay to detect, discriminate and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the HV69/70 deletion, to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). Results: B.1.1.7 variant was first detected in sewage from the Southern city of Malaga (Andalucia) in week 20_52, and multiple introductions during Christmas holidays were inferred in different parts of the country, earlier than clinical epidemiological reporting by the local authorities. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from WWTPs which reached B.1.1.7 prevalences higher than 90% for at least 2 consecutive weeks showed that 8.1+/-1.8 weeks were required for B.1.1.7 to become dominant. Conclusion: The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern (VOCs) as soon as they are identified by clinical sequencing, and its integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL